
Simulation relations have been discovered in many areas: Computer Science, philosophical and modal logic, and set theory. However, the simulation condition is strictly a first-order logic statement. We extend modal logic with modalities and axioms, the latter’s modeling conditions are the simulation conditions. The modalities are normal, i.e., commute with either conjunctions or disjunctions and preserve either Truth or Falsity (respectively). The simulations are considered arrows in a category where the objects are descriptive, general frames. One can augment the simulation modalities by axioms for requiring the underlying modeling simulations to be bisimulations or to be p-morphisms. The modal systems presented are multi-sorted and both sound and complete with respect to their algebraic and Kripke semantics.
Hilbert systems, simulations, Kripke, Modal logic (including the logic of norms), modal algebras, modal logic
Hilbert systems, simulations, Kripke, Modal logic (including the logic of norms), modal algebras, modal logic
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
