Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wind Engineeringarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wind Engineering
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On Blade Arrangement for Multi-Blade Rotors

Authors: David Wood; David Wood; K.L. Hitz;

On Blade Arrangement for Multi-Blade Rotors

Abstract

This paper concerns the blades of multi-bladed water-pumping windmills when they have variable mass and centre of mass. The paper explores blade arrangement strategies that will minimize the eccentricity of the rotor centre of mass and hence any rotor-induced vibration. The number of blades in the rotor is assumed to equal the number made in each production batch, in contrast to the case where a batch of up to 22 blades was optimally matched to produce two- and three-bladed rotors, Hitz & Wood [1]. Using the measured mass and centre of mass of 24 blades for the rotor of a 26 ft Kijito windmill described by Harries [3], three strategies are considered. Random matching of the blades is shown to become increasingly effective as blade number increases. Pairing the blades by ordering in the product of mass and centre of mass, d, followed by random selection of pairs also produces rotors with low eccentricities. The numerical experiments show that the best strategy involving random selection is to pair by ordering, swapping the blades of every second pair, and then randomly arrange the resulting pairs. Finally, a heuristic based on blade pairing is shown to give eccentricities which are high compared to the minimum value determined exactly for 12 blades or less, but apparently low enough to be useful.

Country
Australia
Keywords

branch and bound algorithm, 670, multi-bladed rotor, matching, windmill blades, blade arrangement

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
bronze