Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2012 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Annexin A5 stimulates autophagy and inhibits endocytosis

Authors: Ghislat, G; Aguado, C; Knecht, E;

Annexin A5 stimulates autophagy and inhibits endocytosis

Abstract

Macroautophagy is a major lysosomal catabolic process activated particularly under starvation in eukaryotic cells. A new organelle, the autophagosome, engulfs cytoplasmic substrates, which are degraded after fusion with endosomes and/or lysosomes. During a shotgun proteome analysis of purified lysosomal membranes from mouse fibroblasts, a Ca2+-dependent phospholipid-binding protein, annexin A5, was found to increase on lysosomal membranes under starvation. This suggests a role for this protein, an abundant annexin with a still unknown intracellular function, in starvation-induced lysosomal degradation. Transient overexpression and silencing experiments showed that annexin A5 increased lysosomal protein degradation, and colocalisation experiments, based on GFP sensitivity to lysosomal acidic pH, indicated that this was mainly the result of inducing autophagosome–lysosome fusion. Annexin A5 also inhibited the endocytosis of a fluid-phase marker and cholera toxin, but not receptor-mediated endocytosis. Therefore, we propose a double and opposite role of annexin A5 in regulating the endocytic and autophagic pathways and the fusion of autophagosomes with lysosomes and endosomes.

Keywords

Cholera Toxin, Golgi Apparatus, Endosomes, Membrane Fusion, Mice, Phagosomes, Autophagy, Animals, Humans, Electrophoresis, Gel, Two-Dimensional, Calcium Signaling, Annexin A5, Intracellular Membranes, Fibroblasts, Lysosome, Endocytosis, Protein Transport, HEK293 Cells, NIH 3T3 Cells, Food Deprivation, Lysosomes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Top 10%
Green
bronze