
doi: 10.1242/jcs.01115
pmid: 15020669
All cell types polarize, at least transiently, during division or to generate specialized shapes and functions. This capacity extends from yeast to mammals, and it is now clear that many features of the molecular mechanisms controlling polarization are conserved in all eukaryotic cells. At the centre of the action is Cdc42, a small GTPase of the Rho family. Its activity is precisely controlled both temporally and spatially, and this can be achieved by a wide variety of extracellular cues in multicellular organisms. Moreover, although the functional characteristics of cell polarity are extremely variable (depending on the cell type and the biological context), Cdc42 has an amazing capacity to co-ordinate the control of multiple signal transduction pathways.
cdc42 GTP-Binding Protein, Saccharomyces cerevisiae, Animals, Cell Polarity, Humans, Saccharomyces cerevisiae, Cues, Models, Biological, GTP Phosphohydrolases, Signal Transduction
cdc42 GTP-Binding Protein, Saccharomyces cerevisiae, Animals, Cell Polarity, Humans, Saccharomyces cerevisiae, Cues, Models, Biological, GTP Phosphohydrolases, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 679 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
