Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2009 . Peer-reviewed
Data sources: Crossref
Development
Article . 2009
versions View all 2 versions
addClaim

Auxin patternsSolanum lycopersicumleaf morphogenesis

Authors: Daniel, Koenig; Emmanuelle, Bayer; Julie, Kang; Cris, Kuhlemeier; Neelima, Sinha;

Auxin patternsSolanum lycopersicumleaf morphogenesis

Abstract

One of the most striking aspects of plant diversity is variation in leaf shape. Much of this diversity is achieved by the modulation of leaf blade dissection to form lobes or leaflets. Here, we show that the phytohormone auxin is a crucial signal regulating the partitioned outgrowth necessary to develop a dissected leaf. In developing leaves, the asymmetric distribution of auxin, driven by active transport, delineates the initiation of lobes and leaflets and specifies differential laminar outgrowth. Furthermore, homologous members of the AUX/indole-3-acetic acid (IAA) gene family mediate the action of auxin in determining leaf shape by repressing outgrowth in areas of low auxin concentration during both simple and compound leaf development. These results provide molecular evidence that leaflets initiate in a process reminiscent of organogenesis at the shoot apical meristem, but that compound and simple leaves regulate marginal growth through an evolutionarily conserved mechanism, thus shedding light on the homology of compound and simple leaves.

Related Organizations
Keywords

Indoleacetic Acids, Recombinant Fusion Proteins, Meristem, Arabidopsis, Genes, Plant, Plants, Genetically Modified, Plant Leaves, Solanum lycopersicum, Plant Growth Regulators, Morphogenesis, Transgenes, Plant Proteins, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    187
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
187
Top 1%
Top 10%
Top 1%
bronze