
arXiv: 1610.06524
We resolve a conjecture about a class of binomial initial ideals of $I_{2,n}$, the ideal of the Grassmannian, Gr$(2,\mathbb{C}^n$), which are associated to phylogenetic trees. For a weight vector $��$ in the tropical Grassmannian, $in_��(I_{2,n}) = J_\mathcal{T}$ is the ideal associated to the tree $\mathcal{T}$. The ideal generated by the $2r \times 2r$ subpfaffians of a generic $n \times n$ skew-symmetric matrix is precisely $I_{2,n}^{\{r-1\}}$, the $(r-1)$-secant of $I_{2,n}$. We prove necessary and sufficient conditions on the topology of $\mathcal{T}$ in order for $in_��(I_{2,n})^{\{2\}} = J_\mathcal{T}^{\{2\}}$. We also give a new classof prime initial ideals of the Pfaffian ideals.
14 pages
secant ideal, Pfaffian ideal, Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases), initial ideal, phylogenetics, Mathematics - Algebraic Geometry, FOS: Mathematics, phylogenetic, Toric varieties, Newton polyhedra, Okounkov bodies, 14M25, Algebraic Geometry (math.AG), Applications of commutative algebra (e.g., to statistics, control theory, optimization, etc.)
secant ideal, Pfaffian ideal, Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases), initial ideal, phylogenetics, Mathematics - Algebraic Geometry, FOS: Mathematics, phylogenetic, Toric varieties, Newton polyhedra, Okounkov bodies, 14M25, Algebraic Geometry (math.AG), Applications of commutative algebra (e.g., to statistics, control theory, optimization, etc.)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
