
A transfer function relating a time series $y_t$ to present and past values of a series $x_t$ need not possess an inverse. When $(x_t, y_t)$ is a covariance stationary process, it is shown that noninvertibility in this transfer function has the effect of reducing the error variance of the minimum mean-square-error predictor of $y_t$ one or more steps ahead. In deriving these results a "dual" series to $x_t$ is constructed, which has univariate stochastic structure identical to that of $x_t$ itself, and an associated dual transfer function relating it to $y_t$ which is invertible.
Transfer-function models, invertibility (of transfer function models), distributed lag models, dynamic models, forecasting, prediction, Inference from stochastic processes and prediction, Time series, auto-correlation, regression, etc. in statistics (GARCH), 62M10, 62M20
Transfer-function models, invertibility (of transfer function models), distributed lag models, dynamic models, forecasting, prediction, Inference from stochastic processes and prediction, Time series, auto-correlation, regression, etc. in statistics (GARCH), 62M10, 62M20
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
