
Let $\{X_n: n \geqslant 1\}$ be a sequence of i.i.d. random variables with bounded continuous density or probability mass function $f(x)$. If $E(\exp(\alpha|X_1|^\beta)) 0$ and $0 < \beta \leqslant 1, \mu = L(X_1), c_n = o(n^{1/(2 - \beta)})$ and $h$ is a measurable function such that $M = E(|h(X_1)|\exp(\alpha|X_1|^\beta)) < \infty$, then $$E(h(X_1)|X_1 + \cdots + X_n = n\mu + c_n) = E(h(X_1)) + M\cdot O\big(\frac{1 + |c_n|}{n}\big)$$ uniformly in $h$. It follows that $$\|\mathscr{L} (X_1\mid X_1 + \cdots + X_n = n\mu + c_n) - \mathscr{L}(X_1)\|_{\operatorname{Var}} = O\big(\frac{1 + |c_n|}{n}\big).$$ Applications are given to the binomial-Poisson convergence theorem, spacings, and statistical mechanics.
ratio limit theorem, 60F05, spacings, equivalence of ensembles, Central limit and other weak theorems, rates of convergence, binomial Poisson convergence, conditional expectations, Conditional expectations
ratio limit theorem, 60F05, spacings, equivalence of ensembles, Central limit and other weak theorems, rates of convergence, binomial Poisson convergence, conditional expectations, Conditional expectations
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
