Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
The Annals of Probability
Article . 2022 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Domains of attraction of invariant distributions of the infinite Atlas model

Domains of attraction of invariant distributions of the infinite atlas model
Authors: Banerjee, Sayan; Budhiraja, Amarjit;

Domains of attraction of invariant distributions of the infinite Atlas model

Abstract

The infinite Atlas model describes a countable system of competing Brownian particles where the lowest particle gets a unit upward drift and the rest evolve as standard Brownian motions. The stochastic process of gaps between the particles in the infinite Atlas model does not have a unique stationary distribution and in fact for every $a \ge 0$, $��_a := \bigotimes_{i=1}^{\infty} \operatorname{Exp}(2 + ia)$ is a stationary measure for the gap process. We say that an initial distribution of gaps is in the weak domain of attraction of the stationary measure $��_a$ if the time averaged laws of the stochastic process of the gaps, when initialized using that distribution, converge to $��_a$ weakly in the large time limit. We provide general sufficient conditions on the initial gap distribution of the Atlas particles for it to lie in the weak domain of attraction of $��_a$ for each $a\ge 0$. The cases $a=0$ and $a>0$ are qualitatively different as is seen from the analysis and the sufficient conditions that we provide. Proofs are based on the analysis of synchronous couplings, namely, couplings of the ranked particle systems started from different initial configurations, but driven using the same set of Brownian motions.

37 pages. To appear in Ann. Probab

Keywords

infinite dimensional diffusions, Probability (math.PR), Interacting random processes; statistical mechanics type models; percolation theory, Local time and additive functionals, time averaged occupancy measures, local time, synchronous couplings, FOS: Mathematics, ergodicity, Interacting particle systems in time-dependent statistical mechanics, atlas model, Brownian motion, Diffusion processes, interacting diffusions, Mathematics - Probability

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green