
We introduce models for the analysis of functional data observed at multiple time points. The dynamic behavior of functional data is decomposed into a time-dependent population average, baseline (or static) subject-specific variability, longitudinal (or dynamic) subject-specific variability, subject-visit-specific variability and measurement error. The model can be viewed as the functional analog of the classical longitudinal mixed effects model where random effects are replaced by random processes. Methods have wide applicability and are computationally feasible for moderate and large data sets. Computational feasibility is assured by using principal component bases for the functional processes. The methodology is motivated by and applied to a diffusion tensor imaging (DTI) study designed to analyze differences and changes in brain connectivity in healthy volunteers and multiple sclerosis (MS) patients. An R implementation is provided.87.
Generalized linear models (logistic models), Karhunen-Loève expansion, longitudinal data analysis, Factor analysis and principal components; correspondence analysis, diffusion tensor imaging, Applications of statistics to biology and medical sciences; meta analysis, Diffusion tensor imaging, mixed effects model, Nonparametric estimation, functional data analysis
Generalized linear models (logistic models), Karhunen-Loève expansion, longitudinal data analysis, Factor analysis and principal components; correspondence analysis, diffusion tensor imaging, Applications of statistics to biology and medical sciences; meta analysis, Diffusion tensor imaging, mixed effects model, Nonparametric estimation, functional data analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 146 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
