
Using the effective Lagrangian for the low energy photon-photon interaction the lowest order photon self energy at finite temperature and in non-equilibrium is calculated within the real time formalism. The Debye mass, the dispersion relation, the dielectric tensor, and the velocity of light following from the photon self energy are discussed. As an application we consider the interaction of photons with the cosmic microwave background radiation.
REVTEX, 7 pages, 1 PostSrcipt figure
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
