Downloads provided by UsageCounts
handle: 10400.21/672
We use the first and second laws of thermodynamics to analyze the behavior of an ideal jet engine. Simple analytical expressions for the thermal efficiency, the overall efficiency, and the reduced thrust are derived. We show that the thermal efficiency depends only on the compression ratio r and on the velocity of the aircraft. The other two performance measures depend also on the ratio of the temperature at the turbine to the inlet temperature in the engine, T3/Ti. An analysis of these expressions shows that it is not possible to choose an optimal set of values of r and T3/Ti that maximize both the overall efficiency and thrust. We study how irreversibilities in the compressor and the turbine decrease the overall efficiency of jet engines and show that this effect is more pronounced for smaller T3/Ti.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 9 | |
| downloads | 55 |

Views provided by UsageCounts
Downloads provided by UsageCounts