Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of the New Yo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of the New York Academy of Sciences
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anaplasma phagocytophilum in Ruminants in Europe

Authors: Zerai Woldehiwet;

Anaplasma phagocytophilum in Ruminants in Europe

Abstract

Abstract:  The agent that causes tick‐borne fever (TBF) in sheep was first described in 1940, 8 years after the disease was first recognized in Scotland. The same agent was soon shown to cause TBF in sheep and pasture fever in cattle in other parts of the UK, Scandinavia, and other parts of Europe. After the initial use of the name Rickettsia phagocytophila, the organism was given the name Cytoecetes phagocytophila to reflect its association with granulocytes and its morphological similarity with Cytoecetes microti. This name continued to be used by workers in the UK until the recent reclassification of the granulocytic ehrlichiae affecting ruminants, horses, and humans as variants of the same species, Anaplasma phagocytophilum. TBF and pasture fever are characterized by high fever, recurrent bacteremia, neutropenia, lymphocytopenia, thrombocytopenia, and general immunosuppression, resulting in more severe secondary infections such as tick pyemia, pneumonic pasteurellosis, listeriosis, and enterotoxemia. During the peak period of bacteremia as many as 90% of granulocytes may be infected. The agent is transmitted transtadially by the hard tick Ixodes ricinus, and possibly other ticks. After patent bacteremia, sheep, goats, and cattle become persistently infected “carriers,” perhaps playing an important role in the maintenance of infection, in the flock/herd. Little is known about how efficiently ticks acquire and maintain infection in ruminant populations or whether “carrier” domestic ruminants play an important role as reservoirs of infection, but deer, other free‐living ruminants, and wild rodents are also potential sources of infection. During the late 1990s serological evidence of infection of humans was demonstrated in several European countries, creating a renewed interest and increased awareness of the zoonotic potential of TBF variants. More recently, a few cases of human granulocytic anaplasmosis (HGA) have been reported in some European countries, but it remains to be established whether the variants causing HGA in Europe are genetically and biologically different from those causing TBF in ruminants. TBF is readily diagnosed by demonstrating intracytoplasmic inclusions in peripheral blood granulocytes or monocytes of febrile animals or by detecting specific DNA by polymerase chain reaction (PCR), and TBF variants of A. phagocytophilum can be cultivated in tick cell lines, but the differentiation of TBF variants from HGA variants awaits further investigations.

Related Organizations
Keywords

Immunosuppression Therapy, Anaplasmosis, Ixodes, Ruminants, Europe, Animals, Anaplasma phagocytophilum, Disease Reservoirs

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    121
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
121
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!