<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The electrical conductivity of the ocean is a fundamental parameter in the electrodynamics of the Earth System. This parameter is involved in a number of applications ranging from the calibration of in situ ocean flow meters, through extensions of traditional induction studies, and into quite new opportunities involving the remote sensing of ocean flow and properties from space-borne magnetometers such as carried aboard the three satellites of the Swarm mission launched in 2013. Here, the first ocean conductivity data set calculated directly from observed temperature and salinity measurements is provided. These data describe the globally gridded, three-dimensional mean conductivity as well as seasonal variations, and the statistics of spatial and seasonal variations are shown. This “climatology” data set of ocean conductivity is offered as a standard reference similar to the ocean temperature and salinity climatologies that have long been available.
Ocean, Climatology, QB275-343, QE1-996.5, Geology, Express Letter, G, Conductance, Electrical conductivity, Geography. Anthropology. Recreation, Geodesy
Ocean, Climatology, QB275-343, QE1-996.5, Geology, Express Letter, G, Conductance, Electrical conductivity, Geography. Anthropology. Recreation, Geodesy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 117 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |