
AbstractIn this paper, we obtain a Bernstein-type concentration inequality and McDiarmid’s inequality under upper probabilities for exponential independent random variables. Compared with the classical result, our inequalities are investigated under a family of probability measures, rather than one probability measure. As applications, the convergence rates of the law of large numbers and the Marcinkiewicz–Zygmund-type law of large numbers about the random variables in upper expectation spaces are obtained.
Concentration inequality, QA1-939, Upper probability, Sublinear expectation, Law of large numbers, Mathematics
Concentration inequality, QA1-939, Upper probability, Sublinear expectation, Law of large numbers, Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
