
doi: 10.1186/bf03353278
We investigate photospheric magnetic reconnection due to an encounter of oppositely directed vertical magnetic flux sheets, performing 2.5-dimensional magnetohydrodynamic (MHD) numerical simulations. We construct the initial flux sheets adopting the thin flux tube approximation. Since actual solar resistivity possesses a maximum at the temperature-minimum region, we adopt a resistivity model in which the resistivity is described as a function of height with a maximum (where the magnetic Reynolds number = 1000) at a middle height of our simulation box. Owing to the resistivity, the Sweet-Parker type reconnection occurs at the middle. The inflow speed (υ i ∼ 160 m/s) is nearly equal to the speeds implied by observations of canceling magnetic features on the photosphere. Thus photospheric reconnection seems to be a cancellation mechanism. It is shown that upward propagating MHD slow mode waves are generated by an upward reconnection jet. Moreover, when we incline the initial field lines 30° from the vertical direction in the other flux sheet, Alfven waves are also generated as a result of the reconnection. The energy flux carried by the slow modes and Alfven waves are 1010 and 108 erg/cm2/s, respectively, and the durations are 40 s. Since in models of solar spicules upward propagating slow waves or Alfven waves are usually assumed as the initial perturbations, we compare the energy of both waves. It is found that the wave energies due to the reconnection are comparable to those assumed in spicule models. Thus the photospheric magnetic reconnection might be one of the causes of solar spicules.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
