<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The hydration and carbonation of olivine, the most common mineral on Earth, produce a large amount of heat. Unfortunately, the reaction is too slow for normal technological applications, but when thermally well isolated, most of this heat can be recovered, not only for space heating but even for the production of high-pressure steam. During the reaction, CO2 is sustainably sequestered. In this paper, a number of potential applications are described. Using the hydration and carbonation of olivine not only increases the energy production but also sequesters at the same time large volumes of CO2 that would otherwise be emitted, or would have to be removed by expensive technologies. The term “supergreen fuel” refers to the fact that this energy production is not associated with CO2 production, but quite the contrary, it even sequesters CO2 while producing energy.
Aardwetenschappen
Aardwetenschappen
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |