
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 17391511
pmc: PMC1847821
AbstractBackgroundHistones organize the genomic DNA of eukaryotes into chromatin. The four core histone subunits consist of two consecutive helix-strand-helix motifs and are interleaved into heterodimers with a unique fold. We have searched for the evolutionary origin of this fold using sequence and structure comparisons, based on the hypothesis that folded proteins evolved by combination of an ancestral set of peptides, the antecedent domain segments.ResultsOur results suggest that an antecedent domain segment, corresponding to one helix-strand-helix motif, gave rise divergently to the N-terminal substrate recognition domain of Clp/Hsp100 proteins and to the helical part of the extended ATPase domain found in AAA+ proteins. The histone fold arose subsequently from the latter through a 3D domain-swapping event. To our knowledge, this is the first example of a genetically fixed 3D domain swap that led to the emergence of a protein family with novel properties, establishing domain swapping as a mechanism for protein evolution.ConclusionThe helix-strand-helix motif common to these three folds provides support for our theory of an 'ancient peptide world' by demonstrating how an ancestral fragment can give rise to 3 different folds.
Evolution, Molecular, Histones, Protein Folding, Bacterial Proteins, Structural Biology, Structural Homology, Protein, Archaeal Proteins, Databases, Protein, Research Article, Protein Structure, Tertiary
Evolution, Molecular, Histones, Protein Folding, Bacterial Proteins, Structural Biology, Structural Homology, Protein, Archaeal Proteins, Databases, Protein, Research Article, Protein Structure, Tertiary
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 43 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
