Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Biochemistryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Biochemistry
Article . 2009 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Biochemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Biochemistry
Article . 2009
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2009
Data sources: Lirias
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biochemical characterization of malate synthase G of P. aeruginosa

Authors: Roucourt, Bart; Minnebo, Nikki; Augustijns, Patrick; Hertveldt, Kirsten; Volckaert, Guido; Lavigne, Rob;

Biochemical characterization of malate synthase G of P. aeruginosa

Abstract

Abstract Background Malate synthase catalyzes the second step of the glyoxylate bypass, the condensation of acetyl coenzyme A and glyoxylate to form malate and coenzyme A (CoA). In several microorganisms, the glyoxylate bypass is of general importance to microbial pathogenesis. The predicted malate synthase G of Pseudomonas aeruginosa has also been implicated in virulence of this opportunistic pathogen. Results Here, we report the verification of the malate synthase activity of this predicted protein and its recombinant production in E. coli, purification and biochemical characterization. The malate synthase G of P. aeruginosa PAO1 has a temperature and pH optimum of 37.5°C and 8.5, respectively. Although displaying normal thermal stability, the enzyme was stable up to incubation at pH 11. The following kinetic parameters of P. aeruginosa PAO1 malate synthase G were obtained: Km glyoxylate (70 μM), Km acetyl CoA (12 μM) and Vmax (16.5 μmol/minutes/mg enzyme). In addition, deletion of the corresponding gene showed that it is a prerequisite for growth on acetate as sole carbon source. Conclusion The implication of the glyoxylate bypass in the pathology of various microorganisms makes malate synthase G an attractive new target for antibacterial therapy. The purification procedure and biochemical characterization assist in the development of antibacterial components directed against this target in P. aeruginosa.

Keywords

Biochemistry & Molecular Biology, 3101 Biochemistry and cell biology, ANGSTROM RESOLUTION, OXIDATION, 0601 Biochemistry and Cell Biology, SEQUENCE, Biochemistry, GLYOXYLATE CYCLE, Substrate Specificity, Bacterial Proteins, INFECTION, Enzyme Stability, Molecular Biology, Sequence Deletion, Science & Technology, PURIFICATION, PSEUDOMONAS-AERUGINOSA, Malate Synthase, Glyoxylates, ACID CYCLE, Kinetics, ESCHERICHIA-COLI, Pseudomonas aeruginosa, MYCOBACTERIUM-TUBERCULOSIS, Life Sciences & Biomedicine, 0605 Microbiology, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Average
Green
gold