Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The International Jo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wound Fluids: A Window Into the Wound Environment?

Authors: Laura A. Gilman; Dorne R. Yager; Robert A. Kulina;

Wound Fluids: A Window Into the Wound Environment?

Abstract

Wound healing of the skin is a complex biologic process involving temporal interactions between numerous types of cells, extracellular matrix molecules, and soluble factors. The process of repair can be viewed as involving 3 or 4 phases: homeostasis, inflammation, synthesis, and remodeling. These phases occur at different times and differ in their cellular, biochemical, and physiologic requirements. Disruption of one or more of these interactions can significantly interfere with the repair process. Such comorbidities as age, nutrition, immune status, and underlying disease status (eg, diabetes or venous stasis) contribute additional intricacy to the repair process. Because of this complexity, care of chronic wounds remains highly individualized, and it should not come as a surprise that treatment of these wounds as a group with single target therapies have met with only modest success. A major hurdle in the progression toward improved treatment regimens has been the lack of objective biochemical and physiological landmarks that can be used to assess wound status. Collection and biochemical characterization of wound fluids presents the opportunity to noninvasively obtain information reflecting the status of the wound and of specific biomarkers. This review discusses the collection of wound fluid and highlights biomarkers that may be useful to this end.

Keywords

Wound Healing, Neutrophils, Body Fluids, Extracellular Matrix, Oxidative Stress, Cytokines, Humans, Intercellular Signaling Peptides and Proteins, Protease Inhibitors, Peptide Hydrolases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!