
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The fundamental phenomenological equations of radiative transfer, e.g., Lambert’s cosine rule and the radiant transport equation, are derived from an analysis based on the Cauchy flux theory of continuum mechanics. For the classical case, where the radiance is distributed regularly over the unit sphere, it is shown that Lambert’s rule follows from a balance law for the transfer of radiative power in each direction u on the sphere, together with the appropriate Cauchy postulates and the additional assumption that the corresponding flux vector field ju be parallel to u. The standard radiant transport equation follows from the additional assumption that radiant flux is given as the advection of radiant energy density. A theory is also presented for the singular limit of isolated rays, where the distribution of radiance on the sphere reduces to a Borel measure.
FOS: Physical sciences, 78A40, 74A10, Mathematical Physics (math-ph), Mathematical Physics
FOS: Physical sciences, 78A40, 74A10, Mathematical Physics (math-ph), Mathematical Physics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
