
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>It is the aim of the paper to present a new point of view on rotational elasticity in a nonlinear setting using orthogonal matrices. The proposed model, in the linear approximation, can be compared to the well-known equilibrium equations of static linear elasticity. An appropriate kinetic energy is identified, and we present a dynamical model of rotational elasticity. The propagation of elastic waves in such a medium is studied and we find two classes of waves, transversal rotational waves and longitudinal rotational waves, both of which are solutions of the nonlinear partial differential equations. For certain parameter choices, the transversal wave velocity can be greater than the longitudinal wave velocity. Moreover, parameter ranges are identified where the model describes an auxetic material. However, in all cases the potential energy functional is positive definite. Finally, we couple the rotational waves to linear elastic waves to study the behaviour of the coupled system. We find wave-like solutions to the coupled equations and can visualise our results with the help of suitable figures.
Condensed Matter - Materials Science, math-ph, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Mathematical Physics (math-ph), cond-mat.mtrl-sci, math.MP, Mathematics - Analysis of PDEs, FOS: Mathematics, math.AP, Mathematical Physics, Analysis of PDEs (math.AP)
Condensed Matter - Materials Science, math-ph, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Mathematical Physics (math-ph), cond-mat.mtrl-sci, math.MP, Mathematics - Analysis of PDEs, FOS: Mathematics, math.AP, Mathematical Physics, Analysis of PDEs (math.AP)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
