<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The high impact of the lymph node ratio as a prognostic factor is widely established in colorectal cancer, and is being used as a categorized predictor variable in several studies. However, the cut-off points as well as the number of categories considered differ considerably in the literature. Motivated by the need to obtain the best categorization of the lymph node ratio as a predictor of mortality in colorectal cancer patients, we propose a method to select the best number of categories for a continuous variable in a logistic regression framework. Thus, to this end, we propose a bootstrap-based hypothesis test, together with a new estimation algorithm for the optimal location of the cut-off points called BackAddFor, which is an updated version of the previously proposed AddFor algorithm. The performance of the hypothesis test was evaluated by means of a simulation study, under different scenarios, yielding type I errors close to the nominal errors and good power values whenever a meaningful difference in terms of prediction ability existed. Finally, the methodology proposed was applied to the CCR-CARESS study where the lymph node ratio was included as a predictor of five-year mortality, resulting in the selection of three categories.
1209 Estadística, prediction models, Prognosis, Logistic Models, Categorization, Lymphatic Metastasis, cut-off point, Humans, bootstrap, Lymph Node Ratio, Neoplasm Staging
1209 Estadística, prediction models, Prognosis, Logistic Models, Categorization, Lymphatic Metastasis, cut-off point, Humans, bootstrap, Lymph Node Ratio, Neoplasm Staging
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |