
When developing prediction models for application in clinical practice, health practitioners usually categorise clinical variables that are continuous in nature. Although categorisation is not regarded as advisable from a statistical point of view, due to loss of information and power, it is a common practice in medical research. Consequently, providing researchers with a useful and valid categorisation method could be a relevant issue when developing prediction models. Without recommending categorisation of continuous predictors, our aim is to propose a valid way to do it whenever it is considered necessary by clinical researchers. This paper focuses on categorising a continuous predictor within a logistic regression model, in such a way that the best discriminative ability is obtained in terms of the highest area under the receiver operating characteristic curve (AUC). The proposed methodology is validated when the optimal cut points’ location is known in theory or in practice. In addition, the proposed method is applied to a real data-set of patients with an exacerbation of chronic obstructive pulmonary disease, in the context of the IRYSS-COPD study where a clinical prediction rule for severe evolution was being developed. The clinical variable PCO2 was categorised in a univariable and a multivariable setting.
validation, Models, Statistical, Databases, Factual, prediction models, cut point, Biostatistics, Severity of Illness Index, Decision Support Techniques, Pulmonary Disease, Chronic Obstructive, Logistic Models, categorisation, Area Under Curve, Sample Size, Humans, Algorithms, Software
validation, Models, Statistical, Databases, Factual, prediction models, cut point, Biostatistics, Severity of Illness Index, Decision Support Techniques, Pulmonary Disease, Chronic Obstructive, Logistic Models, categorisation, Area Under Curve, Sample Size, Humans, Algorithms, Software
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 82 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
