Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Statistical Methods ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Statistical approaches to analyse patient-reported outcomes as response variables: An application to health-related quality of life

Authors: Vicente Núñez-Antón; Inmaculada Arostegui; José M. Quintana;

Statistical approaches to analyse patient-reported outcomes as response variables: An application to health-related quality of life

Abstract

Patient-reported outcomes (PRO) are used as primary endpoints in medical research and their statistical analysis is an important methodological issue. Theoretical assumptions of the selected methodology and interpretation of its results are issues to take into account when selecting an appropriate statistical technique to analyse data. We present eight methods of analysis of a popular PRO tool under different assumptions that lead to different interpretations of the results. All methods were applied to responses obtained from two of the health dimensions of the SF–36 Health Survey. The proposed methods are: multiple linear regression (MLR), with least square and bootstrap estimations, tobit regression, ordinal logistic and probit regressions, beta-binomial regression (BBR), binomial-logit-normal regression (BLNR) and coarsening. Selection of an appropriate model depends not only on its distributional assumptions but also on the continuous or ordinal features of the response and the fact that they are constrained to a bounded interval. The BBR approach renders satisfactory results in a broad number of situations. MLR is not recommended, especially with skewed outcomes. Ordinal methods are only appropriate for outcomes with a few number of categories. Tobit regression is an acceptable option under normality assumptions and in the presence of moderate ceiling or floor effect. The BLNR and coarsening proposals are also acceptable, but only under certain distributional assumptions that are difficult to test a priori. Interpretation of the results is more convenient when using the BBR, BLNR and ordinal logistic regression approaches.

Keywords

Models, Statistical, Patients, Endpoint Determination, Health Status, Biostatistics, Feeding and Eating Disorders, Logistic Models, Treatment Outcome, Surveys and Questionnaires, Linear Models, Quality of Life, Humans, Regression Analysis, Female, Longitudinal Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Average
Related to Research communities
Upload OA version
Are you the author? Do you have the OA version of this publication?