Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Dental Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Surface Chemistry of a High-copper Dental Amalgam

Authors: S. Kothari; Robert D. Short; A.J. McDermott; R. van Noort; Morgan R. Alexander;

Surface Chemistry of a High-copper Dental Amalgam

Abstract

In amalgam, mercury is intended to take the form of stable intermetallic compounds. Any mercury leakage must therefore come from free mercury not involved in such compounds. Thus, a knowledge of the exact surface chemistry of dental amalgam is necessary if this phenomenon is to be understood. From XPS and EDS analyses, a model of the surface chemistry of amalgam is proposed which fully characterizes all the phases that are present. The data show the surface to have a composition different from that of the bulk, being comprised of a hydrocarbon deposit and adsorbed water covering the intermetallic phase γ2 (Sn6-8Hg), tin (iv) oxide, and mercury in a free state. After amalgamation, the amount of mercury at the surface decreases with time and eventually attains a constant concentration, where it is all involved in the γ2 phase, leaving no free mercury. A model is proposed for the surface of amalgam and the changes in this model with time.

Related Organizations
Keywords

Time Factors, Surface Properties, Dental Amalgam, Dental Polishing, Models, Structural, Models, Chemical, Microscopy, Electron, Scanning, Copper, Electron Probe Microanalysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!