
pmid: 10651405
The sensory hair cells of the inner ear are responsible for converting balance and hearing stimuli into electrical signals. Until recently, all previous studies of hair cell physiology had been performed on tissue obtained from non-mammals and rodents. In primates, hair cells are difficult to access, because they rest within the densest structure of the body, the otic capsule of the temporal bone. In this report, we describe a technique that we have used in physiological studies to harvest living human hair cells. We collected vestibular and cochlear tissue specimens from adult humans undergoing translabyrinthine and transotic surgical approaches for resection of lateral skull base tumors. Viable hair cells were identified and visualized with light microscopy. The ability to study normal hair cells from humans may further the study of normal and pathological human sensation, hair cell regeneration, and genetic causes of balance and hearing disorders.
Adult, Male, Neuroma, Acoustic, Middle Aged, Cochlea, Hair Cells, Auditory, Tissue and Organ Harvesting, Humans, Female, Vestibule, Labyrinth, Otologic Surgical Procedures, Aged
Adult, Male, Neuroma, Acoustic, Middle Aged, Cochlea, Hair Cells, Auditory, Tissue and Organ Harvesting, Humans, Female, Vestibule, Labyrinth, Otologic Surgical Procedures, Aged
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
