Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Climate
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Climate
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Explore Bristol Research
Article . 2017
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

Investigating the Impact of CO2 on Low-Frequency Variability of the AMOC in HadCM3

Authors: Jo House; Paul Valdes; Edward Armstrong; Joy Singarayer;

Investigating the Impact of CO2 on Low-Frequency Variability of the AMOC in HadCM3

Abstract

Abstract This study investigates the impact of CO2 on the amplitude, frequency, and mechanisms of Atlantic meridional overturning circulation (AMOC) variability in millennial simulations of the HadCM3 coupled climate model. Multichannel singular spectrum analysis (MSSA) and empirical orthogonal functions (EOFs) are applied to the AMOC at four quasi-equilibrium CO2 forcings. The amount of variance explained by the first and second eigenmodes appears to be small (i.e., 11.19%); however, the results indicate that both AMOC strength and variability weaken at higher CO2 concentrations. This accompanies an apparent shift from a predominant 100–125-yr cycle at 350 ppm to 160 yr at 1400 ppm. Changes in amplitude are shown to feed back onto the atmosphere. Variability may be linked to salinity-driven density changes in the Greenland–Iceland–Norwegian Seas, fueled by advection of anomalies predominantly from the Arctic and Caribbean regions. A positive density anomaly accompanies a decrease in stratification and an increase in convection and Ekman pumping, generating a strong phase of the AMOC (and vice versa). Arctic anomalies may be generated via an internal ocean mode that may be key in driving variability and are shown to weaken at higher CO2, possibly driving the overall reduction in amplitude. Tropical anomalies may play a secondary role in modulating variability and are thought to be more influential at higher CO2, possibly due to an increased residence time in the subtropical gyre and/or increased surface runoff driven by simulated dieback of the Amazon rain forest. These results indicate that CO2 may not only weaken AMOC strength but also alter the mechanisms that drive variability, both of which have implications for climate change on multicentury time scales.

Country
United Kingdom
Keywords

Ocean dynamics, Atmosphere-ocean interaction, Spectral analysis/models/distribution, Thermohaline circulation, Climate variability, Climate models

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Average
Green
hybrid