Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

The Probability Distribution of Land Surface Wind Speeds

Authors: Yanping He; Adam H. Monahan; Norman McFarlane; Aiguo Dai;

The Probability Distribution of Land Surface Wind Speeds

Abstract

Abstract The probability density function (pdf) of land surface wind speeds is characterized using a global network of observations. Daytime surface wind speeds are shown to be broadly consistent with the Weibull distribution, while nighttime surface wind speeds are generally more positively skewed than the corresponding Weibull distribution (particularly in summer). In the midlatitudes, these strongly positive skewnesses are shown to be generally associated with conditions of strong surface stability and weak lower-tropospheric wind shear. Long-term tower observations from Cabauw, the Netherlands, and Los Alamos, New Mexico, demonstrate that lower-tropospheric wind speeds become more positively skewed than the corresponding Weibull distribution only in the shallow (~50 m) nocturnal boundary layer. This skewness is associated with two populations of nighttime winds: (i) strongly stably stratified with strong wind shear and (ii) weakly stably or unstably stratified with weak wind shear. Using an idealized two-layer model of the boundary layer momentum budget, it is shown that the observed variability of the daytime and nighttime surface wind speeds can be accounted for through a stochastic representation of intermittent turbulent mixing at the nocturnal boundary layer inversion.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!