Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Taiwanese Journal of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Taiwanese Journal of Mathematics
Article . 2017 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Taiwanese Journal of Mathematics
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Project Euclid
Other literature type . 2017
Data sources: Project Euclid
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2017
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On Surfaces of Maximal Sectional Regularity

On surfaces of maximal sectional regularity
Authors: Brodmann, Markus; Lee, Wanseok; Park, Euisung; Schenzel, Peter;

On Surfaces of Maximal Sectional Regularity

Abstract

We study projective surfaces $X \subset \mathbb{P}^r$ (with $r \geq 5$) of maximal sectional regularity and degree $d > r$, hence surfaces for which the Castelnuovo-Mumford regularity $\reg(\mathcal{C})$ of a general hyperplane section curve $\mathcal{C} = X \cap \mathbb{P}^{r-1}$ takes the maximally possible value $d-r+3$. We use the classification of varieties of maximal sectional regularity of \cite{BLPS1} to see that these surfaces are either particular divisors on a smooth rational $3$-fold scroll $S(1,1,1)\subset \mathbb{P}^5$, or else admit a plane $\mathbb{F} = \mathbb{P}^2 \subset \mathbb{P}^r$ such that $X \cap \mathbb{F} \subset \mathbb{F}$ is a pure curve of degree $d-r+3$. We show that our surfaces are either cones over curves of maximal regularity, or almost non-singular projections of smooth rational surface scrolls. We use this to show that the Castelnuovo-Mumford regularity of such a surface $X$ satisfies the equality $\reg(X) = d-r+3$ and we compute or estimate various of the cohomological invariants as well as the Betti numbers of such surfaces. We also study the geometry of extremal secant lines of our surfaces $X$, more precisely the closure $Σ(X)$ of the set of all proper extremal secant lines to $X$ in the Grassmannian $\mathbb{G}(1, \mathbb{P}^r).$

This paper extends and generalizes some results of arXiv:1305.2355 about homological and cohomological properties of projective surfaces of maximal sectional regularity

Related Organizations
Keywords

Special algebraic curves and curves of low genus, 13D02, 14H45, Syzygies, resolutions, complexes and commutative rings, extremal locus, Mathematics - Algebraic Geometry, extremal variety, variety of maximal sectional regularity, FOS: Mathematics, Algebraic Geometry (math.AG), Castelnuovo-Mumford regularity, 14H45, 13D02

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold