Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cardiotoxicity during Invasive Pneumococcal Disease

Authors: Brown, AO; Millett, ERC; Quint, JK; Orihuela, CJ;

Cardiotoxicity during Invasive Pneumococcal Disease

Abstract

Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and sepsis, with adult hospitalization linked to approximately 19% incidence of an adverse cardiac event (e.g., heart failure, arrhythmia, infarction). Herein, we review the specific host-pathogen interactions that contribute to cardiac dysfunction during invasive pneumococcal disease: (1) cell wall-mediated inhibition of cardiomyocyte contractility; (2) the new observation that S. pneumoniae is capable of translocation into the myocardium and within the heart, forming discrete, nonpurulent, microscopic lesions that are filled with pneumococci; and (3) the bacterial virulence determinants, pneumolysin and hydrogen peroxide, that are most likely responsible for cardiomyocyte cell death. Pneumococcal invasion of heart tissue is dependent on the bacterial adhesin choline-binding protein A that binds to laminin receptor on vascular endothelial cells and binding of phosphorylcholine residues on pneumococcal cell wall to platelet-activating factor receptor. These are the same interactions responsible for pneumococcal translocation across the blood-brain barrier during the development of meningitis. We discuss these interactions and how their neutralization, either with antibody or therapeutic agents that modulate platelet-activating factor receptor expression, may confer protection against cardiac damage and meningitis. Considerable collagen deposition was observed in hearts of mice that had recovered from invasive pneumococcal disease. We discuss the possibility that cardiac scar formation after severe pneumococcal infection may explain why individuals who are hospitalized for pneumonia are at greater risk for sudden death up to 1 year after infection.

Country
United Kingdom
Keywords

Adult, Aged, 80 and over, Male, Adolescent, Infant, Newborn, 610, Infant, Middle Aged, Pneumonia, Pneumococcal, Cardiotoxicity, Anti-Bacterial Agents, Disease Models, Animal, Mice, Streptococcus pneumoniae, Child, Preschool, Host-Pathogen Interactions, Animals, Humans, Female, Child, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%
Green
bronze