
In parsing with Tree Adjoining Grammar (TAG), independent derivations have been shown by Schabes and Shieber (1994) to be essential for correctly supporting syntactic analysis, semantic interpretation, and statistical language modeling. However, the parsing algorithm they propose is not directly applicable to Feature-Based TAGs (FB-TAG). We provide a recognition algorithm for FB-TAG that supports both dependent and independent derivations. The resulting algorithm combines the benefits of independent derivations with those of Feature-Based grammars. In particular, we show that it accounts for a range of interactions between dependent vs. independent derivation on the one hand, and syntactic constraints, linear ordering, and scopal vs. nonscopal semantic dependencies on the other hand.
Computational linguistics. Natural language processing, P98-98.5
Computational linguistics. Natural language processing, P98-98.5
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
