<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 10953245
Knowledge about the distribution of a statistical estimator is important for various purposes, such as the construction of confidence intervals for model parameters or the determination of critical values of tests. A widely used method to estimate this distribution is the so-called bootstrap, which is based on an imitation of the probabilistic structure of the data-generating process on the basis of the information provided by a given set of random observations. In this article we investigate this classical method in the context of artificial neural networks used for estimating a mapping from input to output space. We establish consistency results for bootstrap estimates of the distribution of parameter estimates.
Nonlinear Dynamics, Regression Analysis, Computer Simulation, Neural Networks, Computer, Artifacts, Probability, ddc: ddc:510
Nonlinear Dynamics, Regression Analysis, Computer Simulation, Neural Networks, Computer, Artifacts, Probability, ddc: ddc:510
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 56 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |