Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2015
License: CC BY NC
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Systemic Atherosclerotic Inflammation Following Acute Myocardial Infarction: Myocardial Infarction Begets Myocardial Infarction

Authors: Joshi, Nikhil V; Toor, Iqbal; Shah, Anoop S V; Carruthers, Kathryn; Vesey, Alex T; Alam, Shirjel R; Sills, Andrew; +12 Authors

Systemic Atherosclerotic Inflammation Following Acute Myocardial Infarction: Myocardial Infarction Begets Myocardial Infarction

Abstract

Background Preclinical data suggest that an acute inflammatory response following myocardial infarction (MI) accelerates systemic atherosclerosis. Using combined positron emission and computed tomography, we investigated whether this phenomenon occurs in humans. Methods and Results Overall, 40 patients with MI and 40 with stable angina underwent thoracic 18F‐fluorodeoxyglucose combined positron emission and computed tomography scan. Radiotracer uptake was measured in aortic atheroma and nonvascular tissue (paraspinal muscle). In 1003 patients enrolled in the Global Registry of Acute Coronary Events, we assessed whether infarct size predicted early (≤30 days) and late (>30 days) recurrent coronary events. Compared with patients with stable angina, patients with MI had higher aortic 18F‐fluorodeoxyglucose uptake (tissue‐to‐background ratio 2.15±0.30 versus 1.84±0.18, P <0.0001) and plasma C‐reactive protein concentrations (6.50 [2.00 to 12.75] versus 2.00 [0.50 to 4.00] mg/dL, P =0.0005) despite having similar aortic ( P =0.12) and less coronary ( P =0.006) atherosclerotic burden and similar paraspinal muscular 18F‐fluorodeoxyglucose uptake ( P =0.52). Patients with ST ‐segment elevation MI had larger infarcts (peak plasma troponin 32 300 [10 200 to >50 000] versus 3800 [1000 to 9200] ng/L, P <0.0001) and greater aortic 18F‐fluorodeoxyglucose uptake (2.24±0.32 versus 2.02±0.21, P =0.03) than those with non– ST ‐segment elevation MI. Peak plasma troponin concentrations correlated with aortic 18F‐fluorodeoxyglucose uptake ( r =0.43, P =0.01) and, on multivariate analysis, independently predicted early (tertile 3 versus tertile 1: relative risk 4.40 [95% CI 1.90 to 10.19], P =0.001), but not late, recurrent MI. Conclusions The presence and extent of MI is associated with increased aortic atherosclerotic inflammation and early recurrent MI. This finding supports the hypothesis that acute MI exacerbates systemic atherosclerotic inflammation and remote plaque destabilization: MI begets MI. Clinical Trial Registration URL: https://www.clinicaltrials.gov . Unique identifier: NCT01749254.

Country
United Kingdom
Related Organizations
Keywords

Male, Myocardial Infarction, Coronary Artery Disease, Kaplan-Meier Estimate, Multimodal Imaging, Fluorodeoxyglucose F18, Predictive Value of Tests, Humans, Prospective Studies, Original Research, Aged, Aortitis, Middle Aged, Atherosclerosis, Plaque, Atherosclerotic, C-Reactive Protein, Logistic Models, Positron-Emission Tomography, Multivariate Analysis, Female, Biomarkers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Top 10%
Green
gold