Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Heart Fa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation Heart Failure
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Predicting Heart Failure With Preserved and Reduced Ejection Fraction

The International Collaboration on Heart Failure Subtypes
Authors: Ho, Jennifer E.; Enserro, Danielle; Brouwers, Frank P.; Kizer, Jorge R.; Shah, Sanjiv J.; Psaty, Bruce M.; Bartz, Traci M.; +16 Authors

Predicting Heart Failure With Preserved and Reduced Ejection Fraction

Abstract

Background— Heart failure (HF) is a prevalent and deadly disease, and preventive strategies focused on at-risk individuals are needed. Current HF prediction models have not examined HF subtypes. We sought to develop and validate risk prediction models for HF with preserved and reduced ejection fraction (HFpEF, HFrEF). Methods and Results— Of 28,820 participants from 4 community-based cohorts, 982 developed incident HFpEF and 909 HFrEF during a median follow-up of 12 years. Three cohorts were combined, and a 2:1 random split was used for derivation and internal validation, with the fourth cohort as external validation. Models accounted for multiple competing risks (death, other HF subtype, and unclassified HF). The HFpEF-specific model included age, sex, systolic blood pressure, body mass index, antihypertensive treatment, and previous myocardial infarction; it had good discrimination in derivation (c-statistic 0.80; 95% confidence interval [CI], 0.78–0.82) and validation samples (internal: 0.79; 95% CI, 0.77–0.82 and external: 0.76; 95% CI: 0.71–0.80). The HFrEF-specific model additionally included smoking, left ventricular hypertrophy, left bundle branch block, and diabetes mellitus; it had good discrimination in derivation (c-statistic 0.82; 95% CI, 0.80–0.84) and validation samples (internal: 0.80; 95% CI, 0.78–0.83 and external: 0.76; 95% CI, 0.71–0.80). Age was more strongly associated with HFpEF, and male sex, left ventricular hypertrophy, bundle branch block, previous myocardial infarction, and smoking with HFrEF ( P value for each comparison ≤0.02). Conclusions— We describe and validate risk prediction models for HF subtypes and show good discrimination in a large sample. Some risk factors differed between HFpEF and HFrEF, supporting the notion of pathogenetic differences among HF subtypes.

Country
Netherlands
Keywords

Adult, Male, Time Factors, phenotype, primary prevention, COMMUNITY-BASED COHORT, ATHEROSCLEROSIS RISK, Risk Assessment, Ventricular Function, Left, Decision Support Techniques, SDG 3 - Good Health and Well-being, LEFT-VENTRICULAR HYPERTROPHY, Predictive Value of Tests, Risk Factors, Humans, OF-CARDIOLOGY, Aged, Heart Failure, CARDIOVASCULAR HEALTH, RISK PREDICTION, NATRIURETIC PEPTIDE, diastolic heart failure, Incidence, systolic heart failure, Reproducibility of Results, Stroke Volume, Middle Aged, Prognosis, EUROPEAN-SOCIETY, United States, LIFETIME RISK, risk factor, Female, OUTCOMES RESEARCH

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    252
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
252
Top 1%
Top 1%
Top 1%
bronze