
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
<p>This article introduces some new straightforward and yet powerful formulas in the form of series solutions together with their residual errors for approximating the Riemann-Liouville fractional derivative operator. These formulas are derived by utilizing some of forthright computations, and by utilizing the so-called weighted mean value theorem (WMVT). Undoubtedly, such formulas will be extremely useful in establishing new approaches for several solutions of both linear and nonlinear fractionalorder differential equations. This assertion is confirmed by addressing several linear and nonlinear problems that illustrate the effectiveness and the practicability of the gained findings.</p>
Weighted mean value theorem, Fractional calculus, Riemann-liouville fractional derivative operator
Weighted mean value theorem, Fractional calculus, Riemann-liouville fractional derivative operator
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 3 | |
downloads | 2 |