Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellular Physiology ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cellular Physiology and Biochemistry
Article . 2016 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cellular Physiology and Biochemistry
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stimulation of Eryptosis by Caspofungin

Authors: Rosi Bissinger; Thomas Peter; Florian Lang;

Stimulation of Eryptosis by Caspofungin

Abstract

Background/Aims: The echinocandin antifungal agent caspofungin has been shown to trigger apoptosis of fungal cells. Beyond that, caspofungin is toxic for host mitochondria. Even though lacking mitochondria, erythrocytes may enter apoptosis-like suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, caspase activation and/or activation of p38 kinase, protein kinase C, and casein kinase. The present study explored, whether caspofungin induces eryptosis and, if so, to shed some light on the cellular mechanisms involved. Methods: Flow cytometry was employed to determine phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was quantified from hemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to caspofungin (≥ 30 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly enhanced hemolysis, but did not significantly increase Fluo3-fluorescence, DCFDA fluorescence or ceramide abundance. The effect of caspofungin on annexin-V-binding was not significantly blunted by removal of extracellular Ca2+, by inhibition of caspases with pancaspase inhibitor zVAD (10 µM), or by addition of the antioxidant N-acetyl-cysteine (1 mM), p38 kinase inhibitor SB203580 (2 µM) or protein kinase C inhibitor staurosporine (1 µM). The effect of caspofungin on annexin-V-binding was, however, significantly blunted in the presence of casein kinase inhibitor D4476 (10 µM). Conclusions: Caspofungin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect possibly involving activation of casein kinase.

Related Organizations
Keywords

Antifungal Agents, Erythrocytes, Physiology, Eryptosis, Gene Expression, QD415-436, Ceramides, Biochemistry, Hemolysis, Echinocandins, Lipopeptides, Caspofungin, Cell volume, QP1-981, Humans, Annexin A5, Phosphatidylserine, Cells, Cultured, Fluorescent Dyes, Aniline Compounds, Flow Cytometry, Fluoresceins, Acetylcysteine, Caspases, Calcium, Casein Kinases, Casein kinase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%
gold
Related to Research communities