
Many nearby stars are part of a binary or multiple system. Details about their history are preserved in their multiplicity characteristics, and observations of binary/multiple star systems provide a way to measure fundamental physical properties of the stars as well as clues to their formation and evolution. Moreover, planet formation and dynamics may also be affected by the presence of a second star, or by giant planets in the same system. In this thesis, high resolution imaging of low-mass stars, planet host stars and a multiple planet system is presented. The results of observations and analyses include the discovery of several previously unknown companion stars and multiplicity statistics for M dwarfs in the largest M dwarf multiplicity survey to date. We also present near-infrared characterization of four close M dwarf systems, previously unknown companion candidates to exoplanet host stars, and investigate how a close companion may affect planet formation. New astrometric data is presented for three of the directly imaged planets in the HR8799 system, and an analysis of a possible orbital configuration of planet HR 8799 d.
520 Astronomy and allied sciences, 520
520 Astronomy and allied sciences, 520
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
