
La aplicación del algoritmo de maximización de expectativas (EM) a la estimación de canales da como resultado un conocido estimador iterativo de canales y símbolos (ICSE). El EM-ICSE itera entre un estimador de símbolos basado en la recursión hacia adelante y hacia atrás (ecualizador BCJR) y un estimador de canales, y puede proporcionar estimaciones aproximadas de canales ciegos o semideterminados de máxima probabilidad. Sin embargo, el EM-ICSE tiene una alta complejidad y es propenso a la falta de convergencia. En este documento, proponemos el estimador de ventana extendida (EW), un nuevo estimador de canal para ICSE que se puede usar con cualquier estimador de símbolo de salida suave. Por lo tanto, el estimador de símbolos puede elegirse de acuerdo con las especificaciones de rendimiento o complejidad. Mostramos que el EW-ICSE, un ICSE que utiliza el estimador EW y el ecualizador BCJR, es menos complejo y menos susceptible a la falta de convergencia que el EM-ICSE. Los resultados de la simulación revelan que el EW-ICSE puede converger más rápido que el EM-ICSE.
L'application de l'algorithme de maximisation des attentes (EM) à l'estimation des canaux aboutit à un estimateur itératif de canaux et de symboles (ICSE) bien connu. L'EM-ICSE itère entre un estimateur de symbole basé sur la récursivité avant-arrière (égaliseur BCJR) et un estimateur de canal, et peut fournir des estimations approximatives de canal aveugle ou semi-liberté à probabilité maximale. Néanmoins, l'EM-ICSE a une grande complexité et est sujet aux mauvaises convergences. Dans cet article, nous proposons l'estimateur à fenêtre étendue (EW), un nouvel estimateur de canal pour ICSE qui peut être utilisé avec n'importe quel estimateur de symbole à sortie souple. Par conséquent, l'estimateur de symboles peut être choisi en fonction des spécifications de performance ou de complexité. Nous montrons que l'EW-ICSE, un ICSE qui utilise l'estimateur EW et l'égaliseur BCJR, est moins complexe et moins sujet aux erreurs de convergence que l'EM-ICSE. Les résultats de la simulation révèlent que l'EW-ICSE peut converger plus rapidement que l'EM-ICSE.
The application of the expectation-maximization (EM) algorithm to channel estimation results in a well-known iterative channel-and-symbol estimator (ICSE). The EM-ICSE iterates between a symbol estimator based on the forward-backward recursion (BCJR equalizer) and a channel estimator, and may provide approximate maximum-likelihood blind or semiblind channel estimates. Nevertheless, the EM-ICSE has high complexity, and it is prone to misconvergence. In this paper, we propose the extended-window (EW) estimator, a novel channel estimator for ICSE that can be used with any soft-output symbol estimator. Therefore, the symbol estimator may be chosen according to performance or complexity specifications. We show that the EW-ICSE, an ICSE that uses the EW estimator and the BCJR equalizer, is less complex and less susceptible to misconvergence than the EM-ICSE. Simulation results reveal that the EW-ICSE may converge faster than the EM-ICSE.
يؤدي تطبيق خوارزمية تعظيم التوقع (EM) على تقدير القناة إلى مقدر القناة والرمز التكراري المعروف (ICSE). يتكرر EM - ICSE بين مقدر الرمز استنادًا إلى العودية الأمامية للخلف (معادل BCJR) ومقدر القناة، وقد يوفر تقديرات تقريبية للمكفوفين أو شبه المكفوفين. ومع ذلك، فإن EM - ICSE لديه درجة عالية من التعقيد، وهو عرضة لسوء التقارب. في هذه الورقة، نقترح مقدر النافذة الممتدة (EW)، وهو مقدر قناة جديد لـ ICSE يمكن استخدامه مع أي مقدر رمز مخرجات ناعمة. لذلك، يمكن اختيار مقدر الرمز وفقًا لمواصفات الأداء أو التعقيد. نظهر أن EW - ICSE، وهو ICSE يستخدم مقدر EW ومعادل BCJR، أقل تعقيدًا وأقل عرضة لسوء التقارب من EM - ICSE. تكشف نتائج المحاكاة أن EW - ICSE قد تتلاقى بشكل أسرع من EM - ICSE.
Signal theory (characterization, reconstruction, filtering, etc.), maximum-likelihood estimation, Blind Source Separation and Independent Component Analysis, Signal Decomposition, TK7800-8360, Computer Networks and Communications, Symbol (formal), TK5101-6720, Channel models (including quantum) in information and communication theory, Estimator, Channel Coding, Engineering, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Channel Estimation, Electrical and Electronic Engineering, EM algorithm, Iterative Decoding, iterative systems, Statistics, blind channel estimation, Low-Density Parity-Check and Polar Codes, Computer science, Computer Science Applications, Programming language, Algorithm, Channel (broadcasting), Physical Sciences, Signal Processing, Computer Science, Telecommunication, Telecommunications, Electronics, Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing, Mathematics
Signal theory (characterization, reconstruction, filtering, etc.), maximum-likelihood estimation, Blind Source Separation and Independent Component Analysis, Signal Decomposition, TK7800-8360, Computer Networks and Communications, Symbol (formal), TK5101-6720, Channel models (including quantum) in information and communication theory, Estimator, Channel Coding, Engineering, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Channel Estimation, Electrical and Electronic Engineering, EM algorithm, Iterative Decoding, iterative systems, Statistics, blind channel estimation, Low-Density Parity-Check and Polar Codes, Computer science, Computer Science Applications, Programming language, Algorithm, Channel (broadcasting), Physical Sciences, Signal Processing, Computer Science, Telecommunication, Telecommunications, Electronics, Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing, Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
