
The concepts of basis and frame are studied in the classical literature of functional analysis, Fourier analysis, and wavelet theory in a wide range. In this paper, we consider an operator‐theoretic approach to discrete frame theory on a separable Hilbert space. For this purpose, we define a special type of frames and bases, called wavelet‐type frames and wavelet‐type bases, obtained by acting with a family of bounded linear operators on some vectors, and then investigate the elementary properties of these concepts.
QA1-939, Mathematics
QA1-939, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
