
doi: 10.1155/2020/9826570
Finding characterizations of trivial solitons is an important problem in geometry of Ricci solitons. In this paper, we find several characterizations of a trivial Ricci soliton. First, on a complete shrinking Ricci soliton, we show that the scalar curvature satisfying a certain inequality gives a characterization of a trivial Ricci soliton. Then, it is shown that the potential field having geodesic flow and length of potential field satisfying certain inequality gives another characterization of a trivial Ricci soliton. Finally, we show that the potential field of constant length satisfying an inequality gives a characterization of a trivial Ricci soliton.
Special Riemannian manifolds (Einstein, Sasakian, etc.), geodesic flow, Physics, QC1-999, potential field, Nonlinear parabolic equations, complete shrinking Ricci soliton, scalar curvature
Special Riemannian manifolds (Einstein, Sasakian, etc.), geodesic flow, Physics, QC1-999, potential field, Nonlinear parabolic equations, complete shrinking Ricci soliton, scalar curvature
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
