
doi: 10.1155/2020/7638517
A risk measure commonly used in financial risk management, namely, Value-at-Risk (VaR), is studied. In particular, we find a VaR forecast for heteroscedastic processes such that its (conditional) coverage probability is close to the nominal. To do so, we pay attention to the effect of estimator variability such as asymptotic bias and mean square error. Numerical analysis is carried out to illustrate this calculation for the Autoregressive Conditional Heteroscedastic (ARCH) model, an observable volatility type model. In comparison, we find VaR for the latent volatility model i.e., the Stochastic Volatility Autoregressive (SVAR) model. It is found that the effect of estimator variability is significant to obtain VaR forecast with better coverage. In addition, we may only be able to assess unconditional coverage probability for VaR forecast of the SVAR model. This is due to the fact that the volatility process of the model is unobservable.
Applications of statistics to actuarial sciences and financial mathematics, Time series, auto-correlation, regression, etc. in statistics (GARCH), autoregressive conditional heteroscedastic (ARCH) model, volatility process, financial risk management, value-at-risk (VaR), Probabilities. Mathematical statistics, QA273-280
Applications of statistics to actuarial sciences and financial mathematics, Time series, auto-correlation, regression, etc. in statistics (GARCH), autoregressive conditional heteroscedastic (ARCH) model, volatility process, financial risk management, value-at-risk (VaR), Probabilities. Mathematical statistics, QA273-280
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
