
doi: 10.1155/2018/9380350
Let (Ω,Σ,μ) be a complete σ-finite measure space, φ be a Young function, and X and Y be Banach spaces. Let Lφ(X) denote the Orlicz-Bochner space, and Tφ∧ denote the finest Lebesgue topology on Lφ(X). We study the problem of integral representation of (Tφ∧,·Y)-continuous linear operators T:Lφ(X)→Y with respect to the representing operator-valued measures. The relationships between (Tφ∧,·Y)-continuous linear operators T:Lφ(X)→Y and the topological properties of their representing operator measures are established.
Spaces of vector- and operator-valued functions, representing operator-valued measures, QA1-939, Orlicz-Bochner space, Vector-valued measures and integration, integral representation, Mathematics
Spaces of vector- and operator-valued functions, representing operator-valued measures, QA1-939, Orlicz-Bochner space, Vector-valued measures and integration, integral representation, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
