<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1155/2015/174156
The purpose of this paper is to investigate the existence of solutions to the following initial value problem for nonlinear fractional differential equation involving Caputo sequential fractional derivativeDc0α2Dc0α1yxp-2Dc0α1yx=fx,yx,x>0,y(0)=b0,Dc0α1y(0)=b1, whereDc0α1,Dc0α2are Caputo fractional derivatives,0<α1,α2≤1,p>1, andb0,b1∈R. Local existence of solutions is established by employing Schauder fixed point theorem. Then a growth condition imposed tofguarantees not only the global existence of solutions on the interval[0,+∞), but also the fact that the intervals of existence of solutions with any fixed initial value can be extended to[0,+∞). Three illustrative examples are also presented. Existence results for initial value problems of ordinary differential equations withp-Laplacian on the half-axis follow as a special case of our results.
Physics, QC1-999
Physics, QC1-999
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |