
doi: 10.1155/2014/945948
A new process monitoring approach is proposed for handling the nonlinear monitoring problem in the electrofused magnesia furnace (EFMF). Compared to conventional method, the contributions are as follows: (1) a new kernel principal component analysis is proposed based on loss function in the feature space; (2) the model of kernel principal component analysis based on forgetting factor is updated; (3) a new iterative kernel principal component analysis algorithm is proposed based on penalty factor.
Applications of statistics in engineering and industry; control charts, Factor analysis and principal components; correspondence analysis
Applications of statistics in engineering and industry; control charts, Factor analysis and principal components; correspondence analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
