
doi: 10.1155/2014/697643
This paper deals with a one-parameter generalization of the Schwab-Borchardt mean. The new mean is defined in terms of the inverse functions of the generalized trigonometric and generalized hyperbolic functions. The four new bivariate means are introduced as particular cases of thep-version of the Schwab-Borchardt mean. For the particular value of the parameterp, these means become either the classical logarithmic mean or the Seiffert means or the Neuman-Sándor mean. Wilker- and Huygens-type inequalities involving inverse functions of the generalized trigonometric and the generalized hyperbolic functions are also established.
QA1-939, Wilker- and Huygens-type inequalities, inverse functions, Neuman-Sándor mean, Mathematics, Means
QA1-939, Wilker- and Huygens-type inequalities, inverse functions, Neuman-Sándor mean, Mathematics, Means
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
