Downloads provided by UsageCounts
doi: 10.1155/2013/346952
The spark plasma sintering (SPS), a variant of field-assisted sintering (FAST) or pulsed electric current sintering (PECS), is a novel pressure assisted pulsed electric current sintering process, which utilizes ON-OFF DC pulse energizing. Due to the repeated application of an ON-OFF DC pulse voltage and current flow between powder particles, the spark discharges and the Joule heating (local high temperature state) are therefore dispersed to the overall specimen.The SPS process is based on the electrical spark discharge phenomenon and is a high efficient, energy saving technique with a high heating rate and a short holding time. The problem of rapid grain growth of nanomaterials during conventional sintering can be inhibited to a larger extent by using the SPS technique. The SPS can be used for diverse novel bulk material applications, but it is particularly suitable for the processing of nanomaterials. Despite such anticipated advantages, the optimization of the process window (heating rate-temperature-time) in SPS process is a challenging task. More importantly, the underlying mechanisms for superfast densification still remains to be explored.
Matériaux, Spark plasma sintering, 620, Nanomaterials
Matériaux, Spark plasma sintering, 620, Nanomaterials
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 11 | |
| downloads | 14 |

Views provided by UsageCounts
Downloads provided by UsageCounts