<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1155/2013/128043
Using Riemann-Liouville derivatives, we introduce fractional Sobolev spaces, characterize them, define weak fractional derivatives, and show that they coincide with the Riemann-Liouville ones. Next, we prove equivalence of some norms in the introduced spaces and derive their completeness, reflexivity, separability, and compactness of some imbeddings. An application to boundary value problems is given as well.
QA1-939, Mathematics
QA1-939, Mathematics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |