
doi: 10.1155/2012/712743
In this paper we prove a fixed‐point theorem for a class of operators with suitable properties, in very general conditions. Also, we show that some recent fixed‐points results in Brzdęk et al., (2011) and Brzdęk and Ciepliński (2011) can be obtained directly from our theorem. Moreover, an affirmative answer to the open problem of Brzdęk and Ciepliński (2011) is given. Several corollaries, obtained directly from our main result, show that this is a useful tool for proving properties of generalized Hyers‐Ulam stability for some functional equations in a single variable.
QA1-939, Stability, separation, extension, and related topics for functional equations, Mathematics
QA1-939, Stability, separation, extension, and related topics for functional equations, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 52 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
