
doi: 10.1155/2012/398049
We consider a one‐dimensional semilinear parabolic equation with exponential gradient source and provide a complete classification of large time behavior of the classical solutions: either the space derivative of the solution blows up in finite time with the solution itself remaining bounded or the solution is global and converges in C1 norm to the unique steady state. The main difficulty is to prove C1 boundedness of all global solutions. To do so, we explicitly compute a nontrivial Lyapunov′s functional by carrying out the method of Zelenyak.
QA1-939, Mathematics
QA1-939, Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
